Carbon Nanotubes-based Gas Sensor in Detection of Methane Gas at Room Temperature

Authors

  • Nurjahirah Janudin
  • Norli Abdullah
  • Faizah Md Yasin
  • Mohd Hanif Yaacob
  • Muhammad Zamharir Ahmad
  • Luqman Chuah Abdullah
  • Raja Nor Izawati Raja Othman
  • Noor Aisyah Ahmad Syah
  • Shafreeza Sobri
  • Noor Azilah Mohd Kasim

Keywords:

Carbon nanotubes (CNT), amide, room temperature, methane sensor, low cost

Abstract

Room temperature carbon nanotubes (CNT)-based gas sensor was utilised in detection of methane, CH4 gas. The CNT was functionalized with amide group via Fischer esterification process and labelled as CNT-Amide. Silicon dioxide, SiO2 substrate with interdigitated prepatterned gold electrodes were employed as transducers and drop casting technique was used to deposit the multi walled-CNT samples. The electrical properties of the functionalized CNT samples in the exposure of CH4 gas are studied by recorded the changes of resistance using digital multimeter. Concentration of CH4 gas was varied from 1250 ppm to 10 000 ppm. The changes of electrical resistance of CNT-Amide increases with the concentration of tested gas. Sensor response of functionalized CNT are improved more than 10% as compared to pristine CNT. The sensitivity of CNT-Amide also better than CNT-Carboxyl due to the presence of nitrogen element in amide functional group which chemically active to react with CH4 gas. Additionally, fast response of CNT-Amide towards CH4 gas suggested that the functional group enhanced the rate of gas adsorption on sensing layer.

Downloads

Download data is not yet available.

Downloads

Published

31-12-2018

How to Cite

Nurjahirah Janudin, Norli Abdullah, Faizah Md Yasin, Mohd Hanif Yaacob, Muhammad Zamharir Ahmad, Luqman Chuah Abdullah, Raja Nor Izawati Raja Othman, Noor Aisyah Ahmad Syah, Shafreeza Sobri, & Noor Azilah Mohd Kasim. (2018). Carbon Nanotubes-based Gas Sensor in Detection of Methane Gas at Room Temperature. Zulfaqar Journal of Defence Science, Engineering & Technology, 1(2). Retrieved from https://zulfaqarjdset.upnm.edu.my/index.php/zjdset/article/view/8

Issue

Section

Articles