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The functional relationship model is typically used to describe the nature of data 
that contains unobservable errors. The general unreplicated linear functional 
relationship model is discussed in this paper, which can be used to examine 
circular data with measurement errors. All factors involved in the unreplicated 
linear functional relationship model, such as the rotation parameter, slope 
parameter, and concentration parameter for both observed variables, where the 
ratio is known and can be equal or unequal, will be evaluated. This model's 
parameter estimation is somewhat difficult; however, it is possible to achieve 
numerical results using a simple iteration technique. To validate, analyse, and 
investigate the model's performance, a simulation study was constructed utilizing 
Monte Carlo simulation. The results reveal that, in general, estimation bias is 
minimal and acceptable. The concept is demonstrated using an application to the 
analysis of a real-world wind direction data collection. 
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1.0 INTRODUCTION 
 
Data can be classified as linear data or circular data.  Linear data is commonly used daily and this type of 
data can be analysed by using the standard procedure of statistical technique. A circular data is a set of 
collection points on a circle of unit degree or radius [1]. The concept of circular data analysis can be 
traced back to the mid-18th century when the development of statistical models for circular response 
variables was discussed. Various scientific fields, such as life science [2], biology [3], phenology and 
environmental study [4], have been benefited from the study of circular data.  Due to the nature of the 
angle, formal analysis of circular data cannot be done with the usual statistical technique. 
 

The functional relationship model is part of the error-in-variables model (EIVM), which has 
deterministic or fixed underlying variables. The structural relationship model and the ultrastructural 
relationship model are two further models in EIVM. The structural relationship model is used when the 
variables are random [5].  Meanwhile, because the ultrastructural relationship model is a synthesis of the 
linear and structural relationship models, it contains both random and fixed variables [6]. 

 
The following are some of the key distinctions between conventional regression and EIVM. To begin, 

standard regression assumes that x  value is mathematically observed without error and only y  is seen 
with error for each pair of observations ( ),x y , but EIVM implies that both variables are observed with 
error. Second, unlike traditional linear regression, there is no separation between explanatory and 
response variables in EIVM.  Finally, if the goal is to predict one variable from the other rather than 
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examine the underlying relationship between the two variables, regular linear regression is more 
appropriate. 

 
 Commonly when dealing with linear variables, a linear functional relationship model can be used to 

represent the underlying relationship between the variables. The same goes for circular or directional 
variables, which is the circular functional relationship model that will be used. Compared to linear 
functional, circular functional is more complex since there involve trigonometric expression in the model.  
In order to simplify the relationship, a linear functional relationship model still can be used to represent 
the circular variables. By modifying the regression model for circular variables, the functional 
relationship model for circular variables was first proposed [7]. Then it had been improved according to 
certain conditions and limitations such as slope parameter is considered fixed to one [8], the ratio of error 
concentration parameter is fixed to one [9] and simple functional model with unequal error 
concentration [10]. Many fields of expertise will be benefited from this general model such as business 
and economy [11] property sector [12] and agricultural water management [13]. 

 
This paper aims to propose a general unreplicated linear functional relationship model for circular 

variables by trying to eliminate the previous condition and limitation. The proposed model will be applied 
to the real wind directional data collected from Holderness Coastline. 
 
2.0 THE GENERAL UNREPLICATED LINEAR FUNCTIONAL RELATIONSHIP MODEL 
 
Suppose ix  and iy  are observed values of the circular variables X  and Y  respectively, thus 
0 , 2i ix y π≤ ≤  for 1,2, ,i n= K .  For any fixed iX , assume that the observations ix  and iy  have been 

measured with errors iδ  and iε  respectively. The data are concentrated on interval [ )0, 2π  and linear 

combination of angles should be in [ )0,2π  also, thus modulo 2π  needs to be added into the linear 
relationship between X  and Y  circular variables.  With the assumption of α  as rotation parameter and 
β  as slope parameter, the general unreplicated linear functional relationship (LFRM) model can be 
written in the form of  

 
i i ix X δ= + and i i iy Y ε= +                                                                                                                           (1) 

 
where 

 
( )mod 2i iY Xα β π= + , for 1,2,3, ,i n= K  

 
iδ  and iε  also assumed to be independently distributed by von Mises distributions, that is 

( )0,i xVMδ κ:  and ( )0,i yVMε κ:  where xκ  is error concentration parameter for X  variable and yκ  
is error concentration parameter for Y  variable. 
 

Von Mises distribution is one of the best to describe the distribution on the circle [14]. For any 
circular random variables θ , with mean direction µ  and concentration parameter κ , von Mises 
distribution probability density function is given by, 

 

( ) ( ) ( ){ }
0

1, ; exp cos
2

g
I

µ κ θ κ θ µ
π κ

= −  

 
where ( )0I κ  is the modified Bessel function of the first kind and order zero, defined as

( ) { }
2

0
0

1 exp cos
2

I d
π

κ κ θ θ
π

= ∫ .  The log-likelihood function of the von Mises distribution can be presented 

by: 
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( )
( ) ( ) ( ) ( ) ( )0 0

1 1

log , , , , ; ,

2 log 2 log log cos cos

x y i i i

n n

x y x i i y i i
i i

L X x y

n n I n I x X y X

α β κ κ

π κ κ κ κ α β
= =

=

− − − + − + − −∑ ∑
    (2) 

 
3.0 THE MAXIMUM LIKELIHOOD ESTIMATION OF PARAMETERS 
 
In Equation (2), there are ( )4n +  parameters that need to be estimated. As for simplification of the 
estimation process, the ratio of concentration parameter λ  was assumed as known and defined as 

y xλ κ κ= .  Hence, Equation (2) can be simplified into ( )3n +  parameters to be estimated equation. 
 

( )

( ) ( ) ( ) ( ) ( )0 0
1 1

log , , , ; , ,

2 log 2 log log cos cos

x i i i

n n

x x x i i x i i
i i

L X x y

n n I n I x X y X

α β κ λ

π κ λκ κ λκ α β
= =

=

− − − + − + − −∑ ∑
  (3) 

 
Differentiating Equation (3) with respect to parameters , , xα β κ  and iX , all estimated parameters can be 
obtained. 

 
3.1 Parameter Estimation For Rotation Parameter, α̂  
 
The first partial derivatives of Equation (3) with respect to α  is 
 

( )
1

log sin
n

i i
i

L y Xα β
α =

∂
= − −

∂ ∑  

 
Setting this equal to zero and simplifying 
 

( ) ( )
1 1

ˆ ˆˆ ˆˆ ˆsin cos cos sin 0
n n

i i i i
i i

y X y Xβ α β α
= =

− − − =∑ ∑  

 
Solving for α̂  
 

( )
( )

1

1

ˆ ˆsin
ˆtan

ˆ ˆcos

n

i i
i
n

i i
i

y X

y X

β
α

β

=

=

−
=

−

∑

∑
 

 

( )
( )

1 1

1

ˆ ˆsin
ˆ tan

ˆ ˆcos

n

i i
i
n

i i
i

y X

y X

β
α

β

− =

=

 
− 

 =
 −  

∑

∑
 

 

Let 1ˆ tan S
C

α −  =  
 

, where ( )
1

ˆ ˆsin
n

i i
i

S y Xβ
=

= −∑  and ( )
1

ˆ ˆcos
n

i i
i

C y Xβ
=

= −∑ . Then 
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1

1

1

tan 0, 0

ˆ tan 0

tan 2 0, 0

S S C
C
S C
C
S S C
C

α π

π

−

−

−

   > >  
 

  = + <  
 

   + < >    

        (4) 

3.2 Parameter Estimation For Slope Parameter, β̂  
 
The first partial derivatives of Equation (3) with respect to β  is 
 

( )
1

log sin
n

x i i i
i

L X y Xλκ α β
β =

∂
= − −

∂ ∑  

 
Setting this equal to zero and simplifying 
 

( )
1

ˆˆ ˆˆsin 0
n

i i i
i

X y Xα β
=

− − =∑  

 
β̂  can be obtained iteratively.  Suppose 0β̂  is an initial estimation of β̂ .  Using the Newton-Raphson 

iteration method to estimate β̂  gives 
 

( )
( )

0
1

1 0
2

0
1

ˆˆ ˆˆsin
ˆ ˆ

ˆˆ ˆˆcos

n

i i i
i
n

i i i
i

X y X

X y X

α β
β β

α β

=

=

− −
= +

− −

∑

∑
        (5) 

 
where 1̂β  is an improvement of 0β̂ . 
 
3.3 Parameter Estimation For Concentration Parameter, κ̂  
 
The first partial derivatives of Equation (3) with respect to xκ  is 
 

( )
( )

( )
( ) ( ) ( )0 0

1 10 0

log cos cos
n n

x x
i i i i

i ix x x

I IL n n x X y X
I I

κ λκ
λ α β

κ κ λκ = =

′ ′∂
= − − + − + − −

∂ ∑ ∑  

 

( ) ( ) ( ) ( )
1 1

log cos cos
n n

x x i i i i
i ix

L nA n A x X y Xκ λ λκ λ α β
κ = =

∂
= − − + − + − −

∂ ∑ ∑    (6) 

 
where ( )xA κ  and ( )xA λκ  are the ratio of the modified Bessel function of the first kind and order one 
and the first kind and order zero, defined as 
 

( ) ( )
( )

( )
( )

0 1
2 3

0 0

1 1 11
2 8 8

x x
x

x x x x x

I I
A

I I
κ κ

κ
κ κ κ κ κ

′
= = = − − −  

 

( ) ( )
( )

( )
( ) ( ) ( ) ( )

0 1
2 3

0 0

1 1 11
2 8 8

x x
x

x x x x x

I I
A

I I
λκ λκ

λκ
λκ λκ λκ λκ λκ

′
= = = − − −  

 
Setting Equation (6) to zero and simplifying 
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( ) ( ) ( ) ( )
1 1

ˆˆ ˆˆ ˆ ˆcos cos 0
n n

x x i i i i
i i

nA n A x X y Xκ λ λκ λ α β
= =

− − + − + − − =∑ ∑  

 

( ) ( ) ( ) ( )
1 1

1 ˆˆ ˆˆ ˆ ˆcos cos
n n

x x i i i i
i i

A A x X y X
n

κ λ λκ λ α β
= =

 
+ = − + − − 

 
∑ ∑  

 

Let ( ) ( )
1 1

1 ˆˆ ˆˆcos cos
n n

i i i i
i i

w x X y X
n

λ α β
= =

 
= − + − − 

 
∑ ∑  

 

( ) ( ) ( ) ( ) ( )2 3 2 3

1 1 1 1 1 1ˆ ˆ 1 1
ˆ ˆ ˆ ˆ2 8 8 2 ˆ ˆ8 8

x x
x x x x x x

A A wκ λ λκ λ
κ κ κ λκ λκ λκ

    + = − − − + − − − =      
 

 
Simplifying the above equation to become a cubic equation of 
 

( ) 3 2
2

1 1ˆ ˆ ˆ8 1 8 1 1 0x x xwλ κ κ κ
λ λ

   + − − − + − + =   
   

      (7) 

 
However, the estimation of xκ  in Equation (7) cannot be solved directly.  To solve this cubic 

expression, the build-in numerical approximation function called polyroot function in R software can be 
used. This will give a real root and two complex roots for which the real root will be chosen as an 
approximation xκ , xκ% .  The correction factor raised by Caires and Wyatt [15] for estimation of 
concentration parameter was applied for this case which will give the estimation of xκ  as ˆ 2x xκ κ= % . 
 

As for concentration parameter for Y , since λ  is known yκ  can be estimated by using the definition 
of ratio concentration parameter, which gives ˆ ˆy xκ λκ= . 
 
3.4 Parameter Estimation For Incidental Parameters, ˆ

iX  
 
The first partial derivatives of Equation (3) with respect to iX  is 
 

( ) ( )
1 1

log sin sin
n n

x i i x i i
i ii

L x X y X
X

κ λκ β α β
= =

∂
= − + − −

∂ ∑ ∑  

 
Setting this equal to zero and simplifying 
 

( ) ( )ˆ ˆˆ ˆˆsin sin 0i i i ix X y Xλβ α β− + − − =  

 
As β̂ , ˆ

iX  can be obtained iteratively.  Suppose 0
ˆ

iX  is an initial estimation of ˆ
iX .  Using the Newton-

Raphson iteration method to estimate ˆ
iX  gives 

 

( ) ( )
( ) ( )

0 0

1 0 2
0 0

ˆ ˆˆ ˆˆsin sin
ˆ ˆ

ˆ ˆˆ ˆˆcos cos

i i i i

i i

i i i i

x X y X
X X

x X y X

λβ α β

λβ α β

− + − −
= +

− + − −
      (8) 

 
where 1

ˆ
iX  is an improvement of 0

ˆ
iX . 

 
3.5 The Variance Of The Parameters 
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By using various approximations [16] and Fisher information matrix [17], the estimated variance of 
parameters can be obtained. For any values for the ratio of concentration parameter λ , it can be shown 
that 
 

( )
( ) ( )
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( ) ( )
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n A A

κ κ λκ β λκ
α

κ κ λκ λκ

κ κ λκ β λκ
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κ κ λκ λκ

κ
κ

κ κ κ

=
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= =

 + 
=

  
−  

   
 + =

  
−  

   

=
− −

∑

∑ ∑

∑ ∑

( ) ( ) ( )2ˆ ˆ ˆ ˆx x x x xA Aκ λ λκ λκ λκ λκ

  
 
   + − −     

 

 
4.0 SIMULATION STUDY 
 
In order to evaluate the accuracy of the parameters in this proposed model, a Monte Carlo simulation 
study was performed using the software R. The number of simulations s  is set to be 5000 for each set of 
simulations. Without loss of generality, let the true value of 4α π= , 1β =  and 0.8, 1.0, 1.2λ =  (to 
represent the equal and unequal error of concentration parameter), meanwhile the corresponding value 
of xκ and yκ  are shown in Table 1. In order to simulate the realistic range of error concentration 
parameter, 5, 10, 15xκ =  was chosen since circular variables are less dispersed compared to linear 
variables. The set of X  variable has been generated from the von Mises distribution where 

( 4,5)X VM π:  and the sample size 50, 100, 200, 500n =  are considered for the simulation. 
 

Table 1. Values of xκ and yκ  for each λ  
λ  

xκ  yκ  
0.8 5 4 

10 8 
15 12 

1.0 5 5 
10 10 
15 15 

1.2 5 6 
10 12 
15 18 

 
4.1 Biasness Of α  
 
In this model, α  is considered the circular parameter. Therefore α̂  can be verified by using three 
measures. 
 

i. Circular mean 
 

 

1

1

1

tan 0, 0

ˆ tan 0

tan 2 0, 0

S S C
C
S C
C
S S C
C

α π

π

−

−

−

   > >  
 

  = + <  
 

   + < >    
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where ( )
1

ˆsin
s

j
j

S α
=

= ∑  and ( )
1

ˆcos
s

j
j

C α
=

= ∑  

ii. Circular distance, ˆd π π α α= − − −  

iii. Mean resultant length, ( ) ( )
2 2

1 1

1 ˆ ˆcos sin
s s

j j
j j

R
s

α α
= =

   
= +   

   
∑ ∑  

 
4.2 Biasness Of , xβ κ And yκ  
 
It is noted that , xβ κ and yκ  is considered the continuous parameter for this model.  Therefore, these 
estimated parameters can be tested by using three measures.  Let ω  be a generic term for , xβ κ and yκ . 
Then 

i. Mean, 
1

1ˆ ˆ
s

j
js

ω ω
=

= ∑  

ii. Estimated bias, ˆEB ω ω= −  

iii. Estimated root mean square errors, ( )
2

1

1 ˆ
s

j
j

ERMSE
s

ω ω
=

= −∑  

 
5.0 SIMULATION RESULT AND DISCUSSION 

 
Focusing on mean resulting length and ERMSE, the average value for each group depending on sample 
size and concentration parameters can be plotted as shown in Figure 1 and Figure 2. From Table 2 it 
appears that α̂  is a good α  estimator since the value of the circular mean approaches the true value 
(0.7854 rad or 4π ) when n  is increased for any value of κ . In general, when sample size and 
concentration parameters increase, then the circular distance, d  which represents the biasness of α̂  
decreases. From Figure 1, the mean resultant length, R  also suggests good accuracy as the value is close 
to one. 
 

Table 2. Simulation result for α̂  
λ  κ  n  Performance indicator 

Circular mean Circular distance Mean resultant length 
0.8λ =

 
5
4

x

y

κ
κ

=
=
 

50 0.7713 0.0141 0.9798 
100 0.7774 0.0080 0.9902 
200 0.7796 0.0058 0.9953 
500 0.7825 0.0029 0.9981 

10
8

x

y

κ
κ

=
=
 

50 0.7799 0.0055 0.9909 
100 0.7818 0.0036 0.9957 
200 0.7825 0.0029 0.9978 
500 0.7839 0.0015 0.9992 

15
12

x

y

κ
κ

=
=
 

50 0.7809 0.0045 0.9941 
100 0.7824 0.0030 0.9971 
200 0.7832 0.0022 0.9986 
500 0.7840 0.0014 0.9995 

1.0λ =
 

5
5

x

y

κ
κ

=
=
 

50 0.7684 0.0170 0.9828 
100 0.7728 0.0126 0.9918 
200 0.7781 0.0073 0.9960 
500 0.7827 0.0027 0.9985 

10
10

x

y

κ
κ

=
=
 

50 0.7753 0.0100 0.9922 
100 0.7800 0.0054 0.9962 
200 0.7823 0.0031 0.9982 
500 0.7840 0.0014 0.9993 

15xκ = 50 0.7787 0.0067 0.9949 
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λ  κ  n  Performance indicator 
Circular mean Circular distance Mean resultant length 

 100 0.7806 0.0048 0.9976 
200 0.7822 0.0032 0.9988 
500 0.7844 0.0010 0.9995 

1.2λ =
 

5
6

x

y

κ
κ

=
=
 

50 0.7667 0.0187 0.9852 
100 0.7741 0.0113 0.9929 
200 0.7797 0.0057 0.9965 
500 0.7819 0.0035 0.9986 

10
12

x

y

κ
κ

=
=
 

50 0.7736 0.0118 0.9928 
100 0.7788 0.0066 0.9967 
200 0.7816 0.0038 0.9984 
500 0.7842 0.0012 0.9994 

15
18

x

y

κ
κ

=
=
 

50 0.7807 0.0047 0.9954 
100 0.7816 0.0038 0.9978 
200 0.7827 0.0027 0.9989 
500 0.7845 0.0008 0.9996 

 

 
Figure 1. Mean resultant length for α̂  
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Table 3. Simulation result for ˆ ˆ, xβ κ and ˆyκ  

λ  κ  n  Performance indicator for β̂  Performance indicator for ˆxκ  Performance indicator for ˆyκ  

Mean Estimated Bias ERMSE Mean Estimated Bias ERMSE Mean Estimated Bias ERMSE 

0.8λ =
 

5
4

x

y

κ
κ

=
=

 

50 1.0039 0.0039 0.0563 5.3633 0.3633 1.0593 4.2907 0.2907 0.8475 
100 1.0030 0.0030 0.0390 5.3073 0.3073 0.7109 4.2458 0.2458 0.5687 
200 1.0017 0.0017 0.0266 5.2218 0.2218 0.5613 4.1775 0.1775 0.4490 
500 1.0010 0.0010 0.0165 5.0398 0.0398 0.4681 4.0318 0.0318 0.3745 

10
8

x

y

κ
κ

=
=

 

50 1.0019 0.0019 0.0377 10.4710 0.4710 2.2440 8.3768 0.3768 1.7952 
100 1.0013 0.0013 0.0255 10.2453 0.2453 1.4310 8.1963 0.1963 1.1448 
200 1.0011 0.0011 0.0182 10.1193 0.1193 1.0003 8.0955 0.0955 0.8002 
500 1.0003 0.0003 0.0110 10.0591 0.0591 0.6618 8.0473 0.0473 0.5295 

15
12

x

y

κ
κ

=
=

 

50 1.0013 0.0013 0.0298 15.9491 0.9491 3.4819 12.7592 0.7592 2.7855 
100 1.0012 0.0012 0.0211 15.3212 0.3212 2.3027 12.2570 0.2570 1.8422 
200 1.0005 0.0005 0.0144 15.2201 0.2201 1.5024 12.1761 0.1761 1.2019 
500 1.0004 0.0004 0.0090 15.0239 0.0239 0.9574 12.0191 0.0191 0.7659 

1.0λ =
 

5
5

x

y

κ
κ

=
=

 

50 1.0052 0.0052 0.0511 5.3280 0.3280 1.0790 5.3280 0.3280 1.0790 
100 1.0039 0.0039 0.0354 5.2592 0.2592 0.7371 5.2592 0.2592 0.7371 
200 1.0018 0.0018 0.0242 5.1793 0.1793 0.5650 5.1793 0.1793 0.5650 
500 1.0010 0.0010 0.0150 5.0418 0.0418 0.4522 5.0418 0.0418 0.4522 

10
10

x

y

κ
κ

=
=

 

50 1.0030 0.0030 0.0346 10.5658 0.5658 2.2946 10.5658 0.5658 2.2946 
100 1.0015 0.0015 0.0237 10.2216 0.2216 1.4442 10.2216 0.2216 1.4442 
200 1.0010 0.0010 0.0166 10.1125 0.1125 0.9859 10.1125 0.1125 0.9859 
500 1.0004 0.0004 0.0099 10.1005 0.1005 0.6491 10.1005 0.1005 0.6491 

15
15

x

y

κ
κ

=
=

 

50 1.0019 0.0019 0.0276 15.9830 0.9830 3.5226 15.9830 0.9830 3.5226 
100 1.0010 0.0010 0.0195 15.3569 0.3569 2.2941 15.3570 0.3570 2.2941 
200 1.0008 0.0008 0.0136 15.1233 0.1233 1.5210 15.1233 0.1233 1.5210 
500 1.0004 0.0004 0.0082 15.0535 0.0535 0.9445 15.0535 0.0535 0.9445 

 
 
 
 
 
 
 
1.2λ =
 

 
5
6

x

y

κ
κ

=
=

 

50 1.0047 0.0047 0.0469 5.3779 0.3779 1.1227 6.4535 0.4535 1.3472 
100 1.0033 0.0033 0.0324 5.2972 0.2972 0.7895 6.3567 0.3567 0.9474 
200 1.0014 0.0014 0.0227 5.1943 0.1943 0.6208 6.2332 0.2332 0.7450 
500 1.0010 0.0010 0.0140 5.0121 0.0121 0.5070 6.0145 0.0145 0.6084 

10
12

x

y

κ
κ

=
=

 
50 1.0027 0.0027 0.0327 10.5519 0.5519 2.3242 12.6623 0.6623 2.7890 

100 1.0017 0.0017 0.0224 10.1742 0.1742 1.4530 12.2090 0.2090 1.7436 
200 1.0012 0.0012 0.0154 10.1364 0.1364 0.9977 12.1637 0.1637 1.1973 
500 1.0004 0.0004 0.0096 10.0748 0.0748 0.6461 12.0898 0.0898 0.7753 

 50 1.0018 0.0018 0.0264 15.9214 0.9214 3.5218 19.1056 1.1056 4.2262 
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λ  κ  n  Performance indicator for β̂  Performance indicator for ˆxκ  Performance indicator for ˆyκ  

Mean Estimated Bias ERMSE Mean Estimated Bias ERMSE Mean Estimated Bias ERMSE 
15
18

x

y

κ
κ

=
=

 
100 1.0013 0.0013 0.0181 15.3947 0.3947 2.2297 18.4736 0.4736 2.6757 
200 1.0009 0.0009 0.0126 15.1070 0.1070 1.5235 18.1285 0.1285 1.8282 
500 1.0003 0.0003 0.0077 15.0570 0.0570 0.9561 18.0684 0.0684 1.1473 

 
 

   
 

(a) (b) (c) 
Figure 2. Estimated root mean square errors (ERMSE) for (a) ˆ,β (b) ˆxκ and (c) ˆyκ
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A similar conclusion can be obtained by referring to Table 3 and focusing on parameter ˆ ˆ, xβ κ  and ˆyκ , 

where it suggests that a good prediction for parameter ˆ ˆ, xβ κ  and ˆyκ  has also been conducted based on 
these simulation findings.  The estimated bias (EB) and estimated root mean square errors (ERMSE) for 
ˆ ˆ, xβ κ  and ˆyκ  decrease and approach zero as the sample size and concentration parameter values grow, 

while the mean values for each parameter approach their actual value. Figure 2 confirms these findings 
by demonstrating a resemblance between three graphs that demonstrate that the values of ERMSE for all 
continuous parameters for this model will shrink and fade away as the sample size rises. 
 
6.0 APPLICATION TO WIND DIRECTION 

 
Wind direction data taken from Holderness Coastline on the Humberside Coast of the North Sea in the 
United Kingdom may be shown using the general unreplicated functional relationship model. With a 
sample size of 129, wind direction data was obtained by an HF radar system created by UK Rutherford 
and Appleton Laboratories, which will be referred to as the x  variable. The data for variables y  were 
collected using an anchored wave buoy. Table 4 present the example of a different combination of 
parameters depending on the value ratio of the concentration parameter, λ . As we know, this proposed 
model is subject to the known value of  λ  and can be applied to any possible value of parameters. For this 
case, compared to HF radar system, x  and anchored buoy, y  professionals involved should know the 
ratio of effectiveness between these two variables which bring to the known value of λ  (depending on 
the situation and professional demand).   

 
Table 4. Mean and variance for parameter estimates on wind direction data 

λ  α̂  
(Variance) 

β̂  
(Variance) 

ˆxκ  
(Variance) 

ˆyκ  
(Variance) 

0.6 0.1197 
(0.0055) 

0.9859 
(0.0003) 

15.6339 
(1.9064)   

9.3803 
(0.6863) 

0.8 0.1198 
(0.0057) 

0.9872  
 (0.0003)   

12.7311   
(1.2623) 

10.1849 
(0.8079) 

1.0 0.0954 
(0.0059) 

0.9926 
  (0.0003) 

11.0694   
(0.9534) 

11.0694 
(0.9534) 

1.2 0.0626 
(0.0063) 

0.9980   
(0.0004) 

9.4841   
(0.6978)  

11.3810 
(1.0049) 

1.4 0.0752 
(0.0067) 

0.9953   
(0.0004) 

8.6305   
(0.5771) 

12.0827 
(1.1312) 

2.0 0.0587 
(0.0109) 

0.9941   
(0.0006) 

4.8299   
(0.1762) 

9.6598 
(0.70475) 

 
For example, let's say 1.2λ =  is chosen.  Then the relationship between wind direction variables 

can be written as ( )0.0626 0.998 mod 2Y X π= +  where ( )0,9.4841i VMδ :  and ( )0,11.381i VMε : .  

Since ( ) ( ) ( )ˆˆ ˆˆ ˆ ˆ0.0063, 0.0004, 0.6978xVar Var Varα β κ= = =  and ( )ˆˆ 1.0049yVar κ =  are a small value means 

that it indicates good estimation for the expected parameters. 
 
7.0 CONCLUSION 
 
This paper proposes the general unreplicated linear functional relationship model involving circular 
variables. The proposed model also considers all possible parameters, and all parameters can vary for all 
values depending on the condition for each parameter. Parameter estimation has been obtained by the 
maximum likelihood method. Based on the Monte Carlo simulation study, it suggested that the parameter 
estimation gives a good and consistent estimate since the mean of expected estimation is close to the true 
value and the bias becomes smaller as the sample size and concentration parameter is increasing.  By 
using various approximations and the Fisher Information matrix, the Variance-Covariance matrix of the 
estimated parameters can be obtained. The model was applied to real data collected from the Holderness 
Coastline by examining the relationship between wind direction and two different measurements (HF 
radar system and anchored wave buoy). It is discovered that the suggested model describes the 
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underlying link between the measurement of two circular variables by assuming a known ratio of error 
concentration parameter. Based on the simulation results, it is reasonable to conclude that the proposed 
model is reliable for modelling circular data in general, with next to no bias. Unlike previous studies of 
unreplicated functional models by Hassan et al. (2010) and Mokhtar et al. (2015), this proposed 
unreplicated linear functional relationship model can estimate the parameters without assuming and 
fulfilling any condition or limitation, and it considers all parameters involved. This characteristic is the 
model's strength if the ratio of error concentration parameter is known. 
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