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This paper aims to introduce and discuss two existing algorithms, namely Ford-
Fulkerson’s Algorithm and Dinic’s Algorithm. These algorithms are for 
determining the maximum flow from source (s) to sink (t) in a flow network. A 
numerical example is solved to illustrate both algorithms, and to demonstrate, 
study, and compare the procedures at each iteration. The results show that Dinic’s 
Algorithm returns the maximum flow that takes a smaller number of iterations and 
augmentations than the Ford-Fulkerson Algorithm. In terms of complexity, the 
running time of Dinic’s algorithm is O(n^2m), which should make it perform better 
on dense graphs. This goes to show that the claim by many researchers that Dinic’s 
Algorithm is very powerful in solving big network flow problems is justified. 
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1.0 INTRODUCTION 
 
A network is a rather simple mathematical concept but has many uses. A network can be defined as a 
triple {S│N, A}, where S is a schema made up of elements of N and A, with N being a set of nodes (or 
vertices) and A is a set of arcs (or edges, or links), and that the following rules apply: 
 
• If an arc a ϵ A is in the schema S, then a necessarily joins two nodes n1, n2 ϵ N. 
• If a node n ϵ N is in the schema S, n may stand alone or may be joined by 1 or more arcs. 
• An arc may be undirected, uni-directional, or bi-directional. 

 
The schema S can thus be viewed diagrammatically and is the one often simply referred to as the 
network. Figure 1 is an illustration of a schema. 
 

 
Figure 1. An example of a schema (network) 
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Being a fundamentally simple concept, networks can be readily studied mathematically, and the results 
would give very good insights into the applications where networks are applied. Networks are mainly 
used to represent or model various phenomena, typically 
 
• Dynamic – flows, e.g. workflow, traffic flow, communication patterns, etc. 
• Static – information, e.g. linguistic structures, ontology, etc. 

 
In such representations, several guidelines apply: 
 
• The nodes would normally represent, people, objects, states, countries, etc. 
• In flows, the arcs would be directed, either uni-directional or bi-directional. 
• In static, the arcs usually represent relations between nodes. 
• Nodes and arcs have labels. 
• Nodes and arcs may also be weighted to represent variations in types. 

 
There are many forms of networks with differing properties, which would determine the appropriate 
applications to be represented or modeled. The following are some examples: 
 
• The most well-known networks are computer networks with their different topologies – ring, 

mesh, bus, tree, and star. 
• In general, networks can be a single node, a line of nodes joined by arcs, a tree where no node can 

lead back to itself by tracing the arcs and nodes, and a graph being the most general kind of 
network. As an example, lines and trees are used to represent linguistic structures (morphology, 
syntax, meaning, etc.) 

• Groups of nodes and arcs that form equivalence relations (reflexive, symmetric & transitive) would 
show clusters in the schema. An example application for clusters is for the detection of possible 
terrorist cells, where the nodes represent suspects and the arcs the communications amongst them. 

• If the set of nodes N is formed from two non-intersecting groups, N = X ⊕ Y, and that all arcs in the 
schema join elements of X to elements of Y only – and vice versa, but never within X or within Y, the 
network is referred to as bipartite. Bipartite networks have been used to trace the movements of 
rare animals or insects that carry diseases. 

 
Research in the network’s domain can be empirical or analytical, or both. Empirical research is the 

most common and typically more applied, where the topology of the network used is already known and 
hence its mathematical properties. This would involve some hypothesis on the performance of the 
network, the collection of data (usually large), a simulation experiment, followed by a statistical analysis, 
and then the conclusions vis-à-vis the hypothesis. The main contribution here would be the (statistical) 
proof of the hypothesis. Examples include comparisons of networks of different topologies, performance 
of new devices over certain networks, etc. One of the demonstrations of the comparisons of algorithms to 
determine the maximum flow is between the Ford-Fulkerson’s algorithm and Dinic’s algorithm. 

 
Analytical network research would typically involve the observation of a certain phenomenon and to 

model it using a network, which would entail formulating the topology of the network. Should the 
discovered topology be different from the well-known topologies, then the (mathematical) properties 
should be studied, followed by some proof of concept via an experiment (albeit small). This is the type of 
research that should be carried out. This paper, which is for the purpose of comparing different 
techniques for determining maximum flow problems, and for supporting the postulation that both 
algorithms are often used in solving network flow problems where Dinic’s Algorithm is preferred to solve 
a bigger network. 

 
2.0 LITERATURE REVIEW 
 
The maximum flow problem is an optimization problem. There are many algorithms to solve the problem 
of sending flow at the greatest rate without violating any capacity constraints. A maximum flow problem 
aims to send as much flow as possible between two special nodes, from a source/supply node 𝑠𝑠 to a 
sink/demand node 𝑡𝑡, without exceeding the capacity of any arc. In this paper two maximum flow 
algorithms are discussed, namely the Ford-Fulkerson’s algorithm and the Dinic’s algorithm. These two 
have been chosen because they are the most discussed and applied to solve the maximum flow problems. 
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Pattipati [1] introduced the concept of maximum flow of a network, as well as discussed, the historical 
perspective on maximum flow algorithms as shown in Table 1. Ford-Fulkerson & Edmond & Karp first 
attempts to push flow on one path at a time, called the augmentation path, and if a path cannot be found 
from source to sink, it would then just stop. Other algorithms would try to push flows through several 
paths at the same time, for which a series of layered networks would have to be constructed. If this 
cannot be done, then stop. In more recent algorithms, work is done on the arcs in the form of distributed 
computation. 
 

Table 1. Historical perspective on maximum flow algorithms 
Year Algorithm Complexity 
1956 Ford & Fulkerson can be exponential  
1969 Edmonds & Karp (𝑛𝑛𝑚𝑚2) 
1970 Dinic (𝑛𝑛2𝑚𝑚2) 
1974 Karzanov 𝑂𝑂(𝑛𝑛3) 
1977 Cherkaski 𝑂𝑂�𝑛𝑛2𝑚𝑚1 2⁄ � 
1978 Galil 𝑂𝑂�𝑛𝑛5 3⁄ 𝑚𝑚1 2⁄ � 
1978 Malhotra et al. 𝑂𝑂(𝑛𝑛3) 
1979 Galil et al. 𝑂𝑂(𝑛𝑛𝑚𝑚(log𝑛𝑛)2) 
1980 Sleator & Tarjan 𝑂𝑂(𝑛𝑛𝑚𝑚 log𝑛𝑛) 

1986/1987 Golberg & Tarjan 𝑂𝑂(𝑛𝑛3) 
1987 Bertsekas 𝑂𝑂(𝑛𝑛3) 
1989 Ahuja & Orlin survey of max. flow algorithms 

 
Kyi & Naing [2], applied the Ford-Fulkerson algorithm to calculate the maximum flow in a water 

distribution pipeline network. The flow rate of water in a pipeline is very much dependent on the size of 
the pipes used and the pressure at each node, but they had only considered the capacity and the flow rate 
of water in the network, and not the size and pressure. The highest possible amount of energy flow for an 
eleven-node network, with the source node located in the generation zone and the target node located in 
the target zone, was calculated by Bulut & Ozcan [3] using the Ford-Fulkerson algorithm. They found that 
it was quite simple to use, and the results would be obtained within a reasonable time.  

 
Kovalev & Novichikhin [4] introduced the inverse values for the railway line class in their analysis.  By 

using the inverse values approach, the maximum flow in the system can be determined and it provides a 
clear view of relations of transportation capacities between railway lines and stations. Dergachev et al. [5] 
demonstrated that the methods of graph theory, fuzzy set theory, and mathematical programming can be 
used to solve the problem of determining the optimal option for work teams to carry out complex 
restoration works at railway facilities destroyed as a result of an emergency. Filipova-Patrakieva [6] 
provided examples showing that it is faster to converge to the final solution using Dinic’s algorithm when 
compared with Ford-Fulkerson’s algorithm and Edmond-Karp’s algorithm. The complexity of Dinic’s 
algorithm is equal to the other two algorithms. Bahadra et al. [7] used Dinic’s algorithm on urban road 
junctions to determine the maximum flow and to reduce traffic congestions. Safadi et al. [8] applied Ford-
Fulkerson algorithm, Dinic’s algorithm and Edmund-Karp algorithm to a real-life traffic problem with  
24 nodes and 60 edges in Kota Kinabalu. A comparative analysis was conducted, and it was discovered 
that all the methodologies showed the same amount of flow in the traffic network. However, there is a 
significant different in the CPU times, where Edmund-Karp’s was lesser compared to the others, whereas 
the complexity time is less for Dinic’s algorithm.  
 
3.0 METHODS 
 
3.1 Ford-Fulkerson Algorithm 

 
The Ford-Fulkerson algorithm is an algorithm that deals with maximum-flow and minimum-cut 
problems. It was designed by L. R. Ford, Jr. and D. R. Fulkerson in 1956 [1]. The Ford-Fulkerson algorithm 
assumes that the input is a graph, 𝐺𝐺, along with a source node, 𝑠𝑠, and a sink node, 𝑡𝑡. The graph is any 
representation of a weighted graph, where the vertices are connected by edges of specified weights. The 
source node and the sink node are required to denote the beginning and the end of the flow network. This 
algorithm would send flow as long as there is a path from the source to the sink that can handle it. This 
path is called an augmenting path. To find the maximum flow (and min-cut as a product), the Ford-
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Fulkerson method repeatedly finds augmenting graphs through the residual graphs and augments the 
flow until no more augmenting paths can be found. Figure 2 shows a version of the pseudo-code that 
explains the flow augmentation in more depth: 
 

1. flow = 0 
2. for each edge (u, v) in G: 
3. flow(u, v) = 0 
4. while there is a path, p, from s -> t in residual network G_f: 
5. residual_capacity(p) = min(residual_capacity(u, v) : for (u, v) in p) 
6. flow = flow + residual_capacity(p) 
7. for each edge (u, v) in p: 
8. if (u, v) is a forward edge: 
9. flow(u, v) = flow(u, v) + residual_capacity(p) 
10. else: 
11. flow(u, v) = flow(u, v) - residual_capacity(p) 
12. return flow 

Figure 2. A pseudo-code showing the flow of the Ford-Fulkerson algorithm 
 

3.1.2 Illustrative Example for Ford-Fulkerson Algorithm 
 

Consider the flow network given by Figure 3 below. The source node is denoted by 𝑠𝑠 and the sink note is 
denoted by 𝑡𝑡. The capacities are shown on the respective arcs. The objective is to send the maximum 
amount of flow in this network from source 𝑠𝑠 to sink 𝑡𝑡 using the Ford-Fulkerson’s algorithm. 

 
Figure 3. A network flow diagram 

 
Initialize the value of 𝑓𝑓 for each edge to 0 in the flow network 𝐺𝐺. 

 
Figure 4. Initial flow network 

 
The value of flow = 0. There does not exist any flow from source to sink. 
 
Iteration 1: 
Flow = min {1,4,6} = 1 and so, flow value = 0 + 1 = 1 

 
Figure 5. First iteration 

 
Iteration 2: 
Flow = min {4,3,3,3} = 3 and so, flow value = 0 + 1 + 3 = 4 
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Figure 6. Second iteration 

 
Iteration 3: 
Flow = min {1,3,1,1,3} = 1 and so, flow value = 0 +1 + 3 + 1 = 5 

 
Figure 7. Third iteration 

 
Iteration 4: 
Flow = min {6,2,2,2,2,2} = 2 and so, flow value = 0 + 1 + 3 + 1 + 2 = 7 

 
Figure 8. Fourth iteration 

 
Iteration 5: 
Flow = min {4,6,6,4} = 4 and so, flow value = 0 + 1 + 3 + 1 + 2 + 4 = 11 

 
Figure 9. Fifth iteration 

 
3.2 Dinic’s Algorithm 

 
In 1969 Yefim Dinitz designed the Dinic’s algorithm and published it in 1970 [1].  Dinic’s Algorithm is a 
strong polynomial maximum algorithm. The algorithm is more robust because it is based on novel 
concepts such as building a level graph, blocking flow, and the use of multiple graph traversal techniques, 
including breadth-first search (BFS) and depth-first search.  A level graph is one where the value of each 
node is its shortest distance from the source. Blocking flow is used if no more flow can be sent using a 
level graph, and it includes looking for a new path from the bottleneck node. Dinic’s algorithm runtime 
does not depend on the capacity values of the flow graph, which in some cases could contain very large 
graphs. In practice, the algorithm works better on bipartite graphs and can handle large sizes of such 
graphs. Figure 10 gives a pseudocode for Dinic’s algorithm.  

 
1. function: DinicMaxFlow(Graph G, Node S, Node T): 
2. Initialize flow in all edges to 0, F = 0 
3. Construct level graph 
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4. while (there exists an augmenting path in level graph): 
5. find blocking flow f in level graph 
6. F = F + f 
7. Update level graph 
8. return F 

Figure 10. A pseudo-code showing the flow of the Dinic’s algorithm 
 

3.2.1 Illustrative Example for Dinic’s Algorithm 
 
Initial Residual Graph (same as given Graph). Total Flow = 0. 

 
Figure 11. Initial Residual graph 

 
Iteration 1: 
We assign levels to all nodes using BFS. We also check if more flows are possible (or there is a 
𝑠𝑠 − 𝑡𝑡 path in the residual graph). 

 
Figure 12. Level Graph 

 
Blocking Flow Path: 
s – A – B – C – t   Flow = 1 
s – G – H – I – t    Flow = 4 
s – D – E – C – t   Flow = 2                          Total Flow = 9 
s – D – E – F – t   Flow = 1 
s – G – E – F – t   Flow = 1 
 
After finishing the level graph, the residual graph is as given in Figure 13. 

 
Figure 13. The residual graph 
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Iteration 2: 
We then repeat the BFS to create a new level graph. 

 
Figure 14: Level graph 

 
Blocking flow Path: 
s – D – A – B – C – t     Flow = 1 
s – G – H – E – F – t     Flow = 1                        Total Flow = 9 + 2 = 11 
 
After finishing the level graph, the residual graph is as given in Figure 15. After the removal of edges with 
full capacity, the next level graph is as given in Figure 16. Since there is no more 𝑠𝑠 − 𝑡𝑡 path, the algorithm is 
terminated. The maximum flow value is 11. 
 

 
Figure 15. The residual graph 

 

 
Figure 16. The level graph 

 
4.0 RESULTS AND DISCUSSION 
 
When solving a maximal flow problem, we found that the Ford-Fulkerson algorithm takes five (5) 
iterations to obtain the maximum value, whereas Dinic’s algorithm only takes 2 iterations to get the same 
value.  
Table 2 display the outcomes from the two algorithms. With a simple illustration of a network flow 
problem, we can see clearly that the path chosen and the flow value on each iteration for the Ford- 
Fulkerson’s Algorithm. However, in Dinic’s Algorithm, the paths and the flow values seem to be grouped 
together in each iteration. The difference between the two algorithms is due to the nature of the design of 
each algorithm. The Ford-Fulkerson’s algorithm repeatedly finds augmenting graphs through the residual 
graphs, whereas Dinic’s algorithm works with level graphs and blocking flows. 
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Table 2. Results from the Ford-Fulkerson’s algorithm and Dinic’s algorithm 
Iteration  Result From the Two Techniques 

Path Flow Value Method 
1 
2 
3 
4 
5 

s – A – B – C – t 
s – D – E – F – t 
s – D – A – B – C – t 
s – G – D – A – E – C – t 
s – G – H – I - t 

= 1 
= 1 + 3 = 4 
= 1 + 3 + 1 = 5 
= 1 + 3 + 1 + 2 = 7 
= 1 + 3 + 1 + 2 + 4 = 11 
 

Ford-Fulkerson 

1 
 
 
 
 
 

2 

s – A – B – C – t 
s – G – H – I – t 
s – D – E – C – t 
s – D – E – F – t 
s – G – E – F – t 
 
s – D – A – B – C – t 
s – G – H – E – F - t 

 
= 1 + 4 + 2 + 1 + 1 = 9 
 
 
 
 
= 9 + 2 = 11 

Dinic’s 

 
5.0 CONCLUSION 
 
Analysing a directed graph based on the links in its topology is a necessity for the optimal use of resources 
in a system. Since the type of problem, we discussed was to maximize, we need to determine and assume 
that the allocation of flows has been maximized. The process was to optimize the problem using the 
graph’s model with capacities on its arcs. This paper compared two existing techniques for solving the 
maximum flow problem. Both techniques have their strong points and weak points. We solved the same 
network problem using Ford-Fulkerson’s algorithm and Dinic’s algorithm, using both algorithms to find 
the maximum flow from source (𝑠𝑠) to sink (𝑡𝑡) in a flow network. We found that Dinic’s algorithm returns 
the maximum flow that takes a much lesser number of iterations and augmentations than the Ford-
Fulkerson algorithm. Using novel concepts such as blocking flow, a level graph, and unique applications of 
both BFS and DFS, Dinic’s algorithm outperforms Ford-Fulkerson algorithm due to its high performance 
and strong polynomial time. Since the running time of Dinic’s algorithm is 𝑂𝑂(𝑛𝑛2𝑚𝑚) [1], it should perform 
better on dense graphs. A possible problem with Dinic’s algorithm now is that it might process the same 
part of the layer graph multiple times. It might be possible to speed it up by saving information about the 
paths in the layer graph that have already been visited. Dinic’s algorithm is one of the most useful because 
it is very fast in practice in competitive programming. Both algorithms can also be used to model traffic in a 
road system (e.g. [9]), fluids in pipes, currents in an electrical circuit, or anything similar in which 
something travels through a network of nodes.  Moreover, based on the pseudocodes and detail calculation 
procedure, one can code in C/C++, or JAVA, running these codes by using nonnegative real weighted values 
from actual information and data to solve general Ford-Fulkerson’s and Dinic ‘s maximum flow problems. 
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