
Mohammad Azahari et al. | ZULFAQAR Journal of Defence Science, Engineering & Technology | Vol. 4, Issue 1 (2021)

*Corresponding Author | Mohammad Azahari, A. | afiqah.azahari@upnm.edu.my 1
© The Authors 2021. Published by Penerbit UPNM. This is open access article under the CC BY license.

ZULFAQAR Journal of Defence Science, Engineering & Technology
e-ISSN: 2773-5281
Vol. 4, Issue 1 (2021)
DOI: https://doi.org/10.58247/jdset-2021-0401-05
Journal homepage: https://zulfaqarjdset.upnm.edu.my

ANDROID DESIGNED MALWARE DETECTION CHALLENGES: A FUTURE RESEARCH
DIRECTION

Afiqah Mohammad Azaharia*, Arniyati Ahmada, Syarifah Bahiyah Rahayua, Nur Diyana Kamarudina,
Mohd Hazali Mohamed Halipa

a Cyber Security Centre, National Defence University of Malaysia, Sungai Besi Camp, 57000 Kuala Lumpur, Malaysia

ARTICLE INFO

ABSTRACT

ARTICLE HISTORY
Received: 14-11-2020
Revised: 30-01-2021
Accepted: 10-03-2021
Published: 30-06-2021

Statistically, Android is the most targeted mobile platform when it comes to
malicious application. As a result, Android malware detection has become one of
the sizing topics in the domain of mobile security. As the researchers focusing on
developing a new approach to detect and fight Android malware, there are always
a recent report exhibiting cases of Android malware. Multiple motivations cause
mobile malware writers to continuously develop an application with malware.
Their intentions are to gain access to the private network and to collect sensitive
data. This paper categories type of mobile malware. Furthermore, the types of
mobile malware that often attacks android’s users are discussed. Then,
fundamental techniques usually implement to detect mobile malware are
deliberated. Basic techniques such as Static, Dynamic and Hybrid analysis are
explained in the section. Finally, open issues on detecting and evaluating Android
designed malware presented as a guideline for future research directions.

KEYWORDS
Android
Mobile malware
Malware detection
Malware type
Security threats

1.0 INTRODUCTION

Smartphone could be used to perform many functions similar to PCs. In 2010, the smartphone has been
surpassing PCs in terms of its shipments. Personalisation and powerful performance factors make
smartphones, tablets, and other mobile platforms become ubiquitous of consumer-electronic devices.
After iPhone penetrate the market back in 2007, most of the smartphone was designed with a capacitive
screen that supports multi-touch gestures in thin, slate-like form factor [1]. Its innovation makes users be
able to access the Internet wirelessly, offered with an ability to download or purchase applications, use
cloud or synchronise cloud storage, access to virtual assistants, and as well as making a payment.

Technically, not every smartphone offers the same hardware features. The features are defined by the

technologies that own by the smartphone company. Examples of technologies in smartphones are
including face recognition or fingerprint authentication system, various sensors, NFC (Near Field
Communication), etc. Due to the different technologies used, the Operating System (OS) is responsible to
provide a proper control of it. OS in the smartphone is used to control or perform functions as booting,
memory management, loading and execution, data security, risk management, etc. Different smartphone
OS is using a different approach to run an application or perform a technological function. Latest and
popular smartphone OS can be classified into 5 different categories. The categories are Android, Apple
iOS, Microsoft Window Phone and Blackberry.

Recently, Google reports that the Android operating system has reached a breakthrough with more

than 2.5 billion monthly active Android user, exceeding the number of Apple iOS users by 1.1 billion [2].
One of the prime contributing factors to the popularity of Android is the user’s growth. Android is using
an open-source OS with a maximum global download application in the market. However, Android's
popularity and its attractive environment not only attract users' attention, but it also has encouraged
malware authors to develop malicious applications (or apps) to penetrate the security of mobile devices.

Mohammad Azahari et al. | ZULFAQAR Journal of Defence Science, Engineering & Technology | Vol. 4, Issue 1 (2021)

*Corresponding Author | Mohammad Azahari, A. | afiqah.azahari@upnm.edu.my 2
© The Authors 2021. Published by Penerbit UPNM. This is open access article under the CC BY license.

2.0 CATEGORY OF MOBILE MALWARE

Malicious software or also known as malware is any software that developed with malicious intention.
Mobile malware could be developed to disrupt normal functioning, exploit access control, collect sensitive
information, display unwanted ads, or control the mobile without the user’s knowledge [3]. There are
many conventional types of mobile malware that existed since the introduction of smartphones.
Therefore, in Table 1 shows a summary of several types of mobile malware with its behaviour.

Table 1. Category of Malware with Its Threat and Examples [4-5]
Category Threats Example

Trojan A type of malware that shows itself as a benign app to
attract the user to download and install to the device. It will
perform a malicious act on the background. Trojan will try
to gain remote access to steal, modified, or delete files.
Trojan also spy on users’ activities either by monitoring the
screen, look up for device logs, etc.

DownAPK, GantSpy,
DroidKungFu

Mobile Worm The worm is capable to duplicate and spreading itself from
device to device through the network. Worm could destroy
the host network by utilising bandwidth.

Cabir, Feakk, Mobler,
InSpirit, Ikee.B

Mobile Virus The mobile virus spread by attaching itself to an app. Phone
infected by the virus may be exposed to the threat of
information stealing, network issue, etc.

Dust, Lasco,
Cardblock, CardTrap,
and Crossover

Ransomware Ransomware encrypts files of infected mobile and will not
release the resources until some amount of ransom was
made (Lachtar, Ibdah, and Bacha, 2019).

Ransom.BE78,
Simplocker

Adware Without permission from the user, adware bundled with
other apps and deliver ads. Adware could quietly operate in
the background and trawling through private information,
such as username, password, contact, etc.

UAPush

Spyware Spyware will keep an eye on any activities of infected mobile
devices. These activities consist of collecting key log, screen
watching, and stealing account information. Spyware
attaches itself to a benign application or Trojan to exploit
the vulnerability.

Zitmo, Acallno,
FlaxiSpy

Mobile Crypto-
jacking

Crypto-jacking is when mobile technology was used to mine
bitcoin, secretly. Crypto-jacking runs behind the popular
app. Some secretly mining while streaming a video. Some
secretly mining cryptocurrency while soccer video.

WebCobra,
HiddenMiner

Malware is evolving to the point where it is more sophisticated and harder for the user to notice. This
section has shown that mobile threats are increasing rapidly, and its attack is focusing on a specific target.
Therefore, there is important to have efficient detection of malware to stop the malware attack.

3.0 ANDROID MALWARE DETECTION STRATEGIES

There are multiple approaches used by researchers to analyse Android malware. The detection
approaches included are static, dynamic, and hybrid techniques [6]. These techniques are available to
detect malicious intentions to the host, which is a mobile phone. Therefore, a different method based on
detection techniques and its effectiveness and weakness will be discussed.

3.1 Static Analysis

Static analysis detection was done when application inspection is made without the execution of the
program. The static technique relies on the application source code to differentiate between malware and
benign apps. Hence, code coverage was maximised as this technique depends on the analysis of the
source code. There are multiple methods developed in detecting malicious malware using static analysis.
There is permission analysis, which is among popular techniques. An example of permission-based static
analysis is DroidDetective. DroidDetective detecting malware by comparing several requested permissions
in a benign and malicious application. To run the application properly, the developer needs to declare

Mohammad Azahari et al. | ZULFAQAR Journal of Defence Science, Engineering & Technology | Vol. 4, Issue 1 (2021)

*Corresponding Author | Mohammad Azahari, A. | afiqah.azahari@upnm.edu.my 3
© The Authors 2021. Published by Penerbit UPNM. This is open access article under the CC BY license.

permission in androidmanifest.xml. Showing 96% detection rate, DroidDetective reveals permission, such
as WRITE_SMS, RECEIVE_SMS, SEND_SMS and READ_SMS mostly invited by malware, but not in benign
applications [7]. By exploiting and asking for these permissions, a malicious application could send a
premium-rate message without interference from the users, therefore, cause financial loss.

The permission-based static analysis could give a high detection rate, but in some cases, it also could
result in a high false-positive rate. Moreover, other researchers use behaviour of data flow in determining
the malicious application. FlowDroid is a detection model that analyse the call backs invoked by the
Android framework. To reduce false alarm, FlowDroid properly handles call backs whereas analysis on
data flow, context, and objects. FlowDroid has been successfully detecting malware? [8]. There were also
several approaches to static analysis of Android malware detection differing in runtime, scope, and focus.
Still, most of the objective of developing a malware detection method is to reduce missed leak and false
positive. Static analysis helps in revealing apps with malware before actual execution. However, static
analysis is ineffective to detect malware with code obfuscation and dynamic code loading. Moreover, this
technique also impractical in detecting zero-day malware [9]. Thus, another technique is needed to
overcome the issues.

3.2 Dynamic Analysis

Dynamic analysis includes monitoring various run-time activities such as registry changes, network
activities, or data flow tracking. This was done when the application is executed in a controlled
environment. The purpose of dynamic analysis is to find an analysis of the behaviour of the apps while it
is executed. An example of a method that uses dynamic analysis is TaintDroid that is introduced by [10].
TaintDroid tracks the flow of privacy-sensitive data through a third-party application. It assumes that
downloadable third-party applications are not trustable. This method will classify misbehave application
by logging the tainted data transmitting over the network or leaving the system. It will record data’s
labels, the application that responsible for transmitting the data, and data’s destination [10]. This
information will give users and security service a greater insight on what mobile applications is doing and
potentially could identify the malicious application.

On the other hand, in [10] analyse the network traffic by generating the URL table and logs all

attempts made by application to remote servers. Each log in the URL table will preserve the application
identification and URL that the application contacted. By comparing logs with reliable and comprehensive
domain blacklist, this method could detect applications that commute with malicious domain. In [11],
combine technique taken by Zaman et al. with a machine learning method to identify malicious network
behaviour. They capture traffic from over 5,560 mobile malware samples. The accuracy rate of the
detection model could reach up to 99.9%. However, this method is server-based analytics. Server-based
analytics is impractical to find a newly generated malware that usually initiated at app runtime during its
execution. Moreover, malware samples taken for experimentation or proof of concept for this method are
from Drebin Project. The samples were collected over the period from August 2010 to October 2012,
which is infeasible for today’s malware technology.

Although this analysis is more effective compared to the static analysis, these analyses are time and

resources consuming. Moreover, executing the malicious software in control and virtual environment
may yield different results compare with executing the software in the actual environment. This is
because some malicious software is designed to trick the analyst or sometimes its behaviour may only
trigger under certain conditions.

3.3 Hybrid Analysis

Due to the different effects/behaviours of both malware detection techniques mentioned above,
therefore, features on both static and dynamic detection techniques need to be integrated to improve the
detection of Android’s malware. An in-device malware detection introduces by [12] combines static and
dynamic analysis methods. This method analyses n-grams matching for static analysis whilst dynamic
analysis is based on multi-level monitoring of devices, apps, and user behaviour. Thousands of samples
were processed with detection accuracy that reaches up to 99.7% [8]. Besides, there is a novel 3-level
hybrid malware detection named SAMADroid for the Android operating system. This method combines
three (3) different levels of detection, which are static and dynamic analysis, local and remote hosts, and
machine learning intelligence.

Mohammad Azahari et al. | ZULFAQAR Journal of Defence Science, Engineering & Technology | Vol. 4, Issue 1 (2021)

*Corresponding Author | Mohammad Azahari, A. | afiqah.azahari@upnm.edu.my 4
© The Authors 2021. Published by Penerbit UPNM. This is open access article under the CC BY license.

At level 1, in the static analysis phase, static features are extracted from the manifest file. The static
features are grouped by request hardware components, requested permission, intent filters, suspicious
API calls, and restricted API calls. Further, in the dynamic phase, the application’s runtime behaviour is
analysed. The system call was analysed to overcome the limitation of static analysis. Next at level two, on
the localhost, the dynamic analysis was performed. Monkey Runner was used to generating non-realistic
random input events. All input and behaviour were sent to a remote server, then it will be analysed. At
level three, machine learning was implemented to analysed behaviour in the remote host, thus keeping all
the training set in a server; therefore, contribute to a big data resource for machine learning. Machine
learning intelligence will perform the detection of malicious behaviour of unknown apps and correctly
classify them [8]. While other malware detection tools scan all the application either running on the
background or not, SAMADroid only scans and analyse the user application and does not scan the system
application. Approach taken by SAMADroid is an example of a dynamic malware detection technique
where different approaches combined in detecting malicious applications. This section has briefly
explained the methods taken by researchers in detecting Android malware. Researchers have developed
numerous methods, which are decent in detecting Android malware.

4.0 ANDROID MALWARE DETECTION CHALLENGES

Recently, there is malware known as xHelper slowly infecting more than 32,000 devices in August 2019
[13]. This malware is near impossible to be removed, as it is self-reinstalled even after the infected device
was factory reset. In some cases, even xHelper service has been removed and the user has disabled the
‘Install apps from unknown sources’ option, the setting kept turning itself back on and make the device
re-infected after a minute being cleaned [14]. Main target users are from India, the United States, and
Russia, xHelper could not be launched manually as there is no icon visible on the launcher. Instead, the
malware was launched when there any external events, such as turning on or off the power supply,
rebooting the device, or when there if any apps being installed or uninstalled. Upon successful infecting
the victim’s device, the additional payload includes droppers, clickers, and rootkits that may be
downloaded to further compromise the device [15]. Further, once the device is infected, xHelper will find
a way to use a process inside the Google Play Store application to trigger the re-install operation. xHelper
APK will find a way to hide in special directories that it creates when exploiting the device, therefore,
surviving factory resets.

Unlike apps, directory and files will stay in the device even factory reset is performed

[16]. xHelper is known as a zero-day type of malware. It takes nearly about 10 months for the researcher
to find out how it exploits smartphones and its reliable method of cleaning a smartphone infected by
xHelper. Detection of new malicious application groups has become challenging as new stealth techniques
and encapsulation methods to evade detection tools. Existing mobile antivirus solutions need to be
improved to detect and combat highly sophisticated malware. From the review of open literature, it found
that researchers have focused on improving detection methods to detect zero-day malware in the
malicious application.

Grace et al. introduce RiskRanker in 2012 claimed as a first accurate zero-day android malware

detection [17]. Furthermore, RiskRanker is the first system that performs large-scale security risk analysis
for zero-day malware detection at that time. They proposed a proactive scheme with a two-order risk
analysis. In the first-order analysis, RiskRanker will construct and analysis high-risk apps and medium
risk apps. They will flag high-risk apps if it carries the attack code that exploits a vulnerability in the OS
kernel or privilege daemons to obtain superuser privilege. Next, RiskRanker will report medium risk apps
if the apps secretly monetized users or upload undeniably private information to the remote server. Next,
in the second-order analysis, they will collect and correlate various signs or patterns of behaviour among
apps with malware. This was done due to mitigating the weakness from first-order analysis, which mainly
designed to handle non-obfuscated, encrypted, or dynamically changes payload malicious apps. To
demonstrate the effectiveness and RiskRanker detection accuracy, the researchers collected in total
104,874 distinct apps, from 15 different Android markets, one from the official marketplace and others
from alternative marketplaces. Based on the evaluation, RiskRanker has successfully uncovered 718
malicious apps in 29 malware families, including 322 zero-day malware. However, this type of detections
has some limitations. Their root exploitation detection scheme depends on signatures, which could only
detect known exploits and ignore encrypted or obfuscation exploit during first-order risk analysis.
Further, at second order risk analysis, their prototype only considers the javax.crypto libraries for

Mohammad Azahari et al. | ZULFAQAR Journal of Defence Science, Engineering & Technology | Vol. 4, Issue 1 (2021)

*Corresponding Author | Mohammad Azahari, A. | afiqah.azahari@upnm.edu.my 5
© The Authors 2021. Published by Penerbit UPNM. This is open access article under the CC BY license.

convenient encryption detection, while there are multiple types of libraries that could be used by
malware writers to defeat the detection method taken by RiskRanker.

On the other hand, instead of performing analysis to find malicious behaviour and compare it to other

apps to classify malware apps; Zolotukhin et al. perform an analysis of the behaviour of opcode in benign
apps [18]. The executable file of the benign apps is analysed to extract operation code sequences. Then, n-
gram analysis was employed to the sequences of operation code to discover essential features. Next, the
behaviour model was build based on the finding of the analysis. Finally, the model was used to make a
comparison to detect malicious executable of other new files. Operational code or also known as opcode
is a machine language instruction that specifies the type of operation to be performed [19]. Opcode will
reveal a significant difference between legitimate apps and malicious apps, which is the right approach to
detect malware based on executable files only. To extract features from each of the opcode sequences, the
n-gram model was applied. N-gram model is widely used in statistical natural language processing. N-
gram word model is applied to transform all opcode sequences to the n-opcodes sequence. For example,
this opcode sequence “DEC POP NOP ADD ADD ADD,” when transforming to 2-opcodes will become “DEC
POP”, “POP NOP” and “NOP ADD” and two in the position corresponding to “ADD ADD”. This sequence
which known as feature matrix will be analysed to find anomalies, therefore, implemented to build a
benign software model. To proof the concept, the researchers divided two sets of files. The files were
divided into a training set of 600 files in including 22 infected files and second set for a testing set, which
includes 400 files with 25 infected files. Moreover, infected files in the testing set belong to five malwares,
which is not in the training set, thus it will refer to zero-day malware apps. The motivation is to detect the
five malwares in the training set when the benign software model executed to the training set. Once
executed, the model successfully detects numbers of malware in the training sets, hence proofing that this
method could be implemented in identifying zero-day malware attacks [18].

This technique considers all benign opcode features and builds maximum 2-opcodes sequence; it takes

a long time to train the data set to build a benign software model. Therefore, this model is impractical to
apps with high instruction, as it will be resulting in big numbers of opcode sequences.
Gandotra et al. show that selecting features obtained from both methods help in shortening the time
taken to build a classification model thus hindering the early detection of malware [20]. The project aims
to prove that the features selection process would help to improve model-building time without
compromising the accuracy of the malware detection system. They illustrated that features selection
benefits in shortening the time taken to build classification model, thus may help to overcome the issue
arise from Zolotukhin et al. model, but the discussion on the effectiveness of detecting zero-day malware
with features selection was vaguely discussed.

Additionally, Tong and Yan propose a method that dynamically monitors and collects execution data of

apps to create both malware and benign pattern set. The malware detection system was done at the
server. The execution data are based on the individual system calls and sequential system calls, which are
related to the access of files and networks. If the parameters of the data were chosen properly, the
detection accuracy of the proposed method could reach up to 91.76% with FPR lower than 4%. To proof
the concept that this method could detect a new type of malware, they collect system call patterns of apps
with new malware and compare the patterns in both malicious and benign pattern sets. Furthermore, the
detection accuracy of this method could be further improved, as there is the implementation of self-
learning to the pattern sets [6].

However, this method does not support real-time detection due to the big data processing and new

call patterns of newly detected malware. Privacy of data extracted from the apps to the server also not
considered. The data extracted and stored were large, thus need big storage to support. There are
multiple methods taken by researchers to detect new types of malwares. In addition, the method for zero-
day malware detection and analysis are still imperfect, ineffective, and incomprehensive. Since the
Android application is available not only at the official store, but there are also many security and privacy
problems persuaded. Today, malware detection mechanisms are still incapable to deal with constantly
appearing new types of neither malware, such as xHelper malware nor the existing ones, until an instant
of this malware has damaged several mobile phones. Therefore, it is important to have a new detection
method to detect malware unseen previously, in real-time environments with less consumption of
resources in terms of memory consumption, use of storage and CPU processing.

Mohammad Azahari et al. | ZULFAQAR Journal of Defence Science, Engineering & Technology | Vol. 4, Issue 1 (2021)

*Corresponding Author | Mohammad Azahari, A. | afiqah.azahari@upnm.edu.my 6
© The Authors 2021. Published by Penerbit UPNM. This is open access article under the CC BY license.

This section highlighted some challenges and issues in the perspective of detecting Android malware.
In summary, challenges and issues that should be considered as future research direction are as follows
as new detection technique to detect the zero-day type of malware, new detection technique to identify
mobile malware in real-time, datasets with updated malware family for evaluating malware detection
technique and new mobile malware detection technique with the clear implementation of data privacy.

5.0 CONCLUSION

This work provides state-of-the-art discussions on detecting and evaluating malware focusing on
attacking smartphones with Android operating system and its challenges. To do so, this paper has
categorized the type of mobile malware such as Trojan, Adware, crypto jacking, etc. This paper also
highlighted most popular and fundamental techniques usually used for detecting malware either in the
smartphone that used Android or iOS operating system which are through dynamic analysis, static
analysis, and hybrid analysis. As a side of contribution, newly type of Android malware is presented and
its challenges to detect and evaluate are (such as detection and evaluation/assessment) are addressed. In
the end, this paper suggested the need of new detection technique to detect the zero-day type of malware
and detection technique to identify Android mobile malware in real-time with a clear implementation of
user’s data privacy. Moreover, for research purposes of this fast-evolving research, the dataset of with
updated malware family also required to evaluating any new detection technique.

6.0 ACKNOWLEDGEMENT

Thank you to National Defence University of Malaysia (NDUM)for giving us opportunity to perform this
research.

List of Reference

[1] Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., & Estrin, D. (2010, June).

Diversity in smartphone usage. In Proceedings of the 8th international conference on Mobile
systems, applications, and services (pp. 179-194).

[2] Tung, L. (2019). Bigger than Windows, bigger than iOS: Google now has 2.5 billion active Android
devices.

[3] Al-khatib, A. A., & Hammood, W. A. (2017). Mobile malware and defending systems: Comparison
study. International Journal of Electronics and Information Engineering, 6(2), 116-123.

[4] Lachtar, N., Ibdah, D., & Bacha, A. (2019). The case for native instructions in the detection of mobile
ransomware. IEEE Letters of the Computer Society, 2(2), 16-19.

[5] Sigler, K. (2018). Crypto-jacking: how cyber-criminals are exploiting the crypto-currency boom.
Computer Fraud & Security, 2018(9), 12-14.

[6] Tong, F., & Yan, Z. (2017). A hybrid approach of mobile malware detection in Android. Journal of
Parallel and Distributed computing, 103, 22-31.

[7] Liang, S., & Du, X. (2014, June). Permission-combination-based scheme for android mobile malware
detection. In 2014 IEEE international conference on communications (ICC) (pp. 2301-2306). IEEE.

[8] Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., ... & McDaniel, P. (2014). Flowdroid:
Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps.
ACM sigplan notices, 49(6), 259-269.

[9] Gandotra, E., Bansal, D., & Sofat, S. (2016, December). Zero-day malware detection. In 2016 Sixth
international symposium on embedded computing and system design (ISED) (pp. 171-175). IEEE.

[10] Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B. G., Cox, L. P., ... & Sheth, A. N. (2014). Taintdroid:
an information-flow tracking system for realtime privacy monitoring on smartphones. ACM
Transactions on Computer Systems (TOCS), 32(2), 1-29.

[11] Kathiravan, Y., Amran, M. F. M., Razali, N. A. M., Shukran, M. A. M., Wahab, N. A., Khairuddin, M. A., ...
& Abd Rauf, M. F. (2020). A STUDY ON PRIVATE BROWSING IN WINDOWS ENVIRONMENT.
Zulfaqar Journal of Defence Science, Engineering & Technology, 3(1).

[12] Martinelli, F., Mercaldo, F., & Saracino, A. (2017, April). Bridemaid: An hybrid tool for accurate
detection of android malware. In Proceedings of the 2017 ACM on Asia conference on computer
and communications security (pp. 899-901).

[13] Cimpanu, C. (2019). New “unremovable” xHelper malware has infected 45,000 Android devices.
[14] Schneier, B., xHelper Malware for Android. 8 November 2019.
[15] Wibowo, K., & Wang, J. (2015). MOBILE SECURITY: BEST SECURITY PRACTICES FOR MALWARE

Mohammad Azahari et al. | ZULFAQAR Journal of Defence Science, Engineering & Technology | Vol. 4, Issue 1 (2021)

*Corresponding Author | Mohammad Azahari, A. | afiqah.azahari@upnm.edu.my 7
© The Authors 2021. Published by Penerbit UPNM. This is open access article under the CC BY license.

THREATS. Northeastern Association of Business, Economics and Technology, 304.
[16] Cimpanu, C. (2020). There’s finally a way to remove xHelper, the unremovable Android malware.
[17] Grace, M., Zhou, Y., Zhang, Q., Zou, S., & Jiang, X. (2012, June). Riskranker: scalable and accurate

zero-day android malware detection. In Proceedings of the 10th international conference on
Mobile systems, applications, and services (pp. 281-294).

[18] Zolotukhin, M., & Hämäläinen, T. (2014, January). Detection of zero-day malware based on the
analysis of opcode sequences. In 2014 IEEE 11th Consumer Communications and Networking
Conference (CCNC) (pp. 386-391). IEEE.

[19] Kang, B., Yerima, S. Y., McLaughlin, K., & Sezer, S. (2016, June). N-opcode analysis for android
malware classification and categorization. In 2016 International conference on cyber security and
protection of digital services (cyber security) (pp. 1-7). IEEE.

[20] Gandotra, E., Bansal, D., & Sofat, S. (2016, December). Zero-day malware detection. In 2016 Sixth
international symposium on embedded computing and system design (ISED) (pp. 171-175). IEEE.

	1.0 INTRODUCTION
	5.0 CONCLUSION

