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Statistically, Android is the most targeted mobile platform when it comes to 
malicious application. As a result, Android malware detection has become one of 
the sizing topics in the domain of mobile security. As the researchers focusing on 
developing a new approach to detect and fight Android malware, there are always 
a recent report exhibiting cases of Android malware. Multiple motivations cause 
mobile malware writers to continuously develop an application with malware. 
Their intentions are to gain access to the private network and to collect sensitive 
data. This paper categories type of mobile malware. Furthermore, the types of 
mobile malware that often attacks android’s users are discussed. Then, 
fundamental techniques usually implement to detect mobile malware are 
deliberated. Basic techniques such as Static, Dynamic and Hybrid analysis are 
explained in the section. Finally, open issues on detecting and evaluating Android 
designed malware presented as a guideline for future research directions. 
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1.0 INTRODUCTION 
 
Smartphone could be used to perform many functions similar to PCs. In 2010, the smartphone has been 
surpassing PCs in terms of its shipments. Personalisation and powerful performance factors make 
smartphones, tablets, and other mobile platforms become ubiquitous of consumer-electronic devices. 
After iPhone penetrate the market back in 2007, most of the smartphone was designed with a capacitive 
screen that supports multi-touch gestures in thin, slate-like form factor [1]. Its innovation makes users be 
able to access the Internet wirelessly, offered with an ability to download or purchase applications, use 
cloud or synchronise cloud storage, access to virtual assistants, and as well as making a payment.   

 
Technically, not every smartphone offers the same hardware features. The features are defined by the 

technologies that own by the smartphone company. Examples of technologies in smartphones are 
including face recognition or fingerprint authentication system, various sensors, NFC (Near Field 
Communication), etc. Due to the different technologies used, the Operating System (OS) is responsible to 
provide a proper control of it. OS in the smartphone is used to control or perform functions as booting, 
memory management, loading and execution, data security, risk management, etc. Different smartphone 
OS is using a different approach to run an application or perform a technological function. Latest and 
popular smartphone OS can be classified into 5 different categories. The categories are Android, Apple 
iOS, Microsoft Window Phone and Blackberry.  

 
Recently, Google reports that the Android operating system has reached a breakthrough with more 

than 2.5 billion monthly active Android user, exceeding the number of Apple iOS users by 1.1 billion [2]. 
One of the prime contributing factors to the popularity of Android is the user’s growth. Android is using 
an open-source OS with a maximum global download application in the market. However, Android's 
popularity and its attractive environment not only attract users' attention, but it also has encouraged 
malware authors to develop malicious applications (or apps) to penetrate the security of mobile devices.  
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2.0 CATEGORY OF MOBILE MALWARE 
 
Malicious software or also known as malware is any software that developed with malicious intention. 
Mobile malware could be developed to disrupt normal functioning, exploit access control, collect sensitive 
information, display unwanted ads, or control the mobile without the user’s knowledge [3]. There are 
many conventional types of mobile malware that existed since the introduction of smartphones. 
Therefore, in Table 1 shows a summary of several types of mobile malware with its behaviour. 
 

Table 1. Category of Malware with Its Threat and Examples [4-5]  
Category Threats Example 

Trojan A type of malware that shows itself as a benign app to 
attract the user to download and install to the device. It will 
perform a malicious act on the background. Trojan will try 
to gain remote access to steal, modified, or delete files. 
Trojan also spy on users’ activities either by monitoring the 
screen, look up for device logs, etc. 

DownAPK, GantSpy, 
DroidKungFu 

Mobile Worm  The worm is capable to duplicate and spreading itself from 
device to device through the network. Worm could destroy 
the host network by utilising bandwidth.  

Cabir, Feakk, Mobler, 
InSpirit, Ikee.B 

Mobile Virus The mobile virus spread by attaching itself to an app. Phone 
infected by the virus may be exposed to the threat of 
information stealing, network issue, etc.  

Dust, Lasco, 
Cardblock, CardTrap, 
and Crossover  

Ransomware Ransomware encrypts files of infected mobile and will not 
release the resources until some amount of ransom was 
made (Lachtar, Ibdah, and Bacha, 2019).   

Ransom.BE78, 
Simplocker 

Adware Without permission from the user, adware bundled with 
other apps and deliver ads. Adware could quietly operate in 
the background and trawling through private information, 
such as username, password, contact, etc. 

UAPush 

Spyware Spyware will keep an eye on any activities of infected mobile 
devices. These activities consist of collecting key log, screen 
watching, and stealing account information. Spyware 
attaches itself to a benign application or Trojan to exploit 
the vulnerability.  

Zitmo, Acallno, 
FlaxiSpy 

Mobile Crypto-
jacking 

Crypto-jacking is when mobile technology was used to mine 
bitcoin, secretly. Crypto-jacking runs behind the popular 
app. Some secretly mining while streaming a video. Some 
secretly mining cryptocurrency while soccer video. 

WebCobra, 
HiddenMiner  

 
Malware is evolving to the point where it is more sophisticated and harder for the user to notice. This 
section has shown that mobile threats are increasing rapidly, and its attack is focusing on a specific target. 
Therefore, there is important to have efficient detection of malware to stop the malware attack. 
 
3.0 ANDROID MALWARE DETECTION STRATEGIES 
 
There are multiple approaches used by researchers to analyse Android malware. The detection 
approaches included are static, dynamic, and hybrid techniques [6]. These techniques are available to 
detect malicious intentions to the host, which is a mobile phone. Therefore, a different method based on 
detection techniques and its effectiveness and weakness will be discussed. 
 
3.1 Static Analysis 
 
Static analysis detection was done when application inspection is made without the execution of the 
program. The static technique relies on the application source code to differentiate between malware and 
benign apps. Hence, code coverage was maximised as this technique depends on the analysis of the 
source code. There are multiple methods developed in detecting malicious malware using static analysis. 
There is permission analysis, which is among popular techniques. An example of permission-based static 
analysis is DroidDetective. DroidDetective detecting malware by comparing several requested permissions 
in a benign and malicious application. To run the application properly, the developer needs to declare 
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permission in androidmanifest.xml. Showing 96% detection rate, DroidDetective reveals permission, such 
as WRITE_SMS, RECEIVE_SMS, SEND_SMS and READ_SMS mostly invited by malware, but not in benign 
applications [7]. By exploiting and asking for these permissions, a malicious application could send a 
premium-rate message without interference from the users, therefore, cause financial loss.  
 

The permission-based static analysis could give a high detection rate, but in some cases, it also could 
result in a high false-positive rate. Moreover, other researchers use behaviour of data flow in determining 
the malicious application. FlowDroid is a detection model that analyse the call backs invoked by the 
Android framework. To reduce false alarm, FlowDroid properly handles call backs whereas analysis on 
data flow, context, and objects. FlowDroid has been successfully detecting malware? [8]. There were also 
several approaches to static analysis of Android malware detection differing in runtime, scope, and focus. 
Still, most of the objective of developing a malware detection method is to reduce missed leak and false 
positive. Static analysis helps in revealing apps with malware before actual execution. However, static 
analysis is ineffective to detect malware with code obfuscation and dynamic code loading. Moreover, this 
technique also impractical in detecting zero-day malware [9]. Thus, another technique is needed to 
overcome the issues. 
 
3.2 Dynamic Analysis  
 
Dynamic analysis includes monitoring various run-time activities such as registry changes, network 
activities, or data flow tracking. This was done when the application is executed in a controlled 
environment. The purpose of dynamic analysis is to find an analysis of the behaviour of the apps while it 
is executed. An example of a method that uses dynamic analysis is TaintDroid that is introduced by [10]. 
TaintDroid tracks the flow of privacy-sensitive data through a third-party application. It assumes that 
downloadable third-party applications are not trustable. This method will classify misbehave application 
by logging the tainted data transmitting over the network or leaving the system. It will record data’s 
labels, the application that responsible for transmitting the data, and data’s destination [10]. This 
information will give users and security service a greater insight on what mobile applications is doing and 
potentially could identify the malicious application.  

 
On the other hand, in [10] analyse the network traffic by generating the URL table and logs all 

attempts made by application to remote servers. Each log in the URL table will preserve the application 
identification and URL that the application contacted. By comparing logs with reliable and comprehensive 
domain blacklist, this method could detect applications that commute with malicious domain. In [11], 
combine technique taken by Zaman et al. with a machine learning method to identify malicious network 
behaviour. They capture traffic from over 5,560 mobile malware samples. The accuracy rate of the 
detection model could reach up to 99.9%. However, this method is server-based analytics. Server-based 
analytics is impractical to find a newly generated malware that usually initiated at app runtime during its 
execution. Moreover, malware samples taken for experimentation or proof of concept for this method are 
from Drebin Project. The samples were collected over the period from August 2010 to October 2012, 
which is infeasible for today’s malware technology.  

 
Although this analysis is more effective compared to the static analysis, these analyses are time and 

resources consuming. Moreover, executing the malicious software in control and virtual environment 
may yield different results compare with executing the software in the actual environment. This is 
because some malicious software is designed to trick the analyst or sometimes its behaviour may only 
trigger under certain conditions. 
 
3.3 Hybrid Analysis 
 
Due to the different effects/behaviours of both malware detection techniques mentioned above, 
therefore, features on both static and dynamic detection techniques need to be integrated to improve the 
detection of Android’s malware. An in-device malware detection introduces by [12] combines static and 
dynamic analysis methods. This method analyses n-grams matching for static analysis whilst dynamic 
analysis is based on multi-level monitoring of devices, apps, and user behaviour. Thousands of samples 
were processed with detection accuracy that reaches up to 99.7% [8]. Besides, there is a novel 3-level 
hybrid malware detection named SAMADroid for the Android operating system. This method combines 
three (3) different levels of detection, which are static and dynamic analysis, local and remote hosts, and 
machine learning intelligence.  
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At level 1, in the static analysis phase, static features are extracted from the manifest file. The static 
features are grouped by request hardware components, requested permission, intent filters, suspicious 
API calls, and restricted API calls. Further, in the dynamic phase, the application’s runtime behaviour is 
analysed. The system call was analysed to overcome the limitation of static analysis. Next at level two, on 
the localhost, the dynamic analysis was performed. Monkey Runner was used to generating non-realistic 
random input events. All input and behaviour were sent to a remote server, then it will be analysed.  At 
level three, machine learning was implemented to analysed behaviour in the remote host, thus keeping all 
the training set in a server; therefore, contribute to a big data resource for machine learning. Machine 
learning intelligence will perform the detection of malicious behaviour of unknown apps and correctly 
classify them [8]. While other malware detection tools scan all the application either running on the 
background or not, SAMADroid only scans and analyse the user application and does not scan the system 
application. Approach taken by SAMADroid is an example of a dynamic malware detection technique 
where different approaches combined in detecting malicious applications. This section has briefly 
explained the methods taken by researchers in detecting Android malware. Researchers have developed 
numerous methods, which are decent in detecting Android malware. 
 
4.0 ANDROID MALWARE DETECTION CHALLENGES  
 
Recently, there is malware known as xHelper slowly infecting more than 32,000 devices in August 2019 
[13]. This malware is near impossible to be removed, as it is self-reinstalled even after the infected device 
was factory reset. In some cases, even xHelper service has been removed and the user has disabled the 
‘Install apps from unknown sources’ option, the setting kept turning itself back on and make the device 
re-infected after a minute being cleaned [14]. Main target users are from India, the United States, and 
Russia, xHelper could not be launched manually as there is no icon visible on the launcher. Instead, the 
malware was launched when there any external events, such as turning on or off the power supply, 
rebooting the device, or when there if any apps being installed or uninstalled. Upon successful infecting 
the victim’s device, the additional payload includes droppers, clickers, and rootkits that may be 
downloaded to further compromise the device [15]. Further, once the device is infected, xHelper will find 
a way to use a process inside the Google Play Store application to trigger the re-install operation. xHelper 
APK will find a way to hide in special directories that it creates when exploiting the device, therefore, 
surviving factory resets.  

 
Unlike apps, directory and files will stay in the device even factory reset is performed  

[16]. xHelper is known as a zero-day type of malware. It takes nearly about 10 months for the researcher 
to find out how it exploits smartphones and its reliable method of cleaning a smartphone infected by 
xHelper. Detection of new malicious application groups has become challenging as new stealth techniques 
and encapsulation methods to evade detection tools. Existing mobile antivirus solutions need to be 
improved to detect and combat highly sophisticated malware. From the review of open literature, it found 
that researchers have focused on improving detection methods to detect zero-day malware in the 
malicious application.  

 
Grace et al. introduce RiskRanker in 2012 claimed as a first accurate zero-day android malware 

detection [17]. Furthermore, RiskRanker is the first system that performs large-scale security risk analysis 
for zero-day malware detection at that time. They proposed a proactive scheme with a two-order risk 
analysis. In the first-order analysis, RiskRanker will construct and analysis high-risk apps and medium 
risk apps. They will flag high-risk apps if it carries the attack code that exploits a vulnerability in the OS 
kernel or privilege daemons to obtain superuser privilege. Next, RiskRanker will report medium risk apps 
if the apps secretly monetized users or upload undeniably private information to the remote server. Next, 
in the second-order analysis, they will collect and correlate various signs or patterns of behaviour among 
apps with malware. This was done due to mitigating the weakness from first-order analysis, which mainly 
designed to handle non-obfuscated, encrypted, or dynamically changes payload malicious apps. To 
demonstrate the effectiveness and RiskRanker detection accuracy, the researchers collected in total 
104,874 distinct apps, from 15 different Android markets, one from the official marketplace and others 
from alternative marketplaces. Based on the evaluation, RiskRanker has successfully uncovered 718 
malicious apps in 29 malware families, including 322 zero-day malware. However, this type of detections 
has some limitations. Their root exploitation detection scheme depends on signatures, which could only 
detect known exploits and ignore encrypted or obfuscation exploit during first-order risk analysis. 
Further, at second order risk analysis, their prototype only considers the javax.crypto libraries for 
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convenient encryption detection, while there are multiple types of libraries that could be used by 
malware writers to defeat the detection method taken by RiskRanker.  

 
On the other hand, instead of performing analysis to find malicious behaviour and compare it to other 

apps to classify malware apps; Zolotukhin et al. perform an analysis of the behaviour of opcode in benign 
apps [18]. The executable file of the benign apps is analysed to extract operation code sequences. Then, n-
gram analysis was employed to the sequences of operation code to discover essential features. Next, the 
behaviour model was build based on the finding of the analysis. Finally, the model was used to make a 
comparison to detect malicious executable of other new files. Operational code or also known as opcode 
is a machine language instruction that specifies the type of operation to be performed [19]. Opcode will 
reveal a significant difference between legitimate apps and malicious apps, which is the right approach to 
detect malware based on executable files only. To extract features from each of the opcode sequences, the 
n-gram model was applied. N-gram model is widely used in statistical natural language processing. N-
gram word model is applied to transform all opcode sequences to the n-opcodes sequence. For example, 
this opcode sequence “DEC POP NOP ADD ADD ADD,” when transforming to 2-opcodes will become “DEC 
POP”, “POP NOP” and “NOP ADD” and two in the position corresponding to “ADD ADD”. This sequence 
which known as feature matrix will be analysed to find anomalies, therefore, implemented to build a 
benign software model. To proof the concept, the researchers divided two sets of files. The files were 
divided into a training set of 600 files in including 22 infected files and second set for a testing set, which 
includes 400 files with 25 infected files. Moreover, infected files in the testing set belong to five malwares, 
which is not in the training set, thus it will refer to zero-day malware apps. The motivation is to detect the 
five malwares in the training set when the benign software model executed to the training set. Once 
executed, the model successfully detects numbers of malware in the training sets, hence proofing that this 
method could be implemented in identifying zero-day malware attacks [18].  

 
This technique considers all benign opcode features and builds maximum 2-opcodes sequence; it takes 

a long time to train the data set to build a benign software model. Therefore, this model is impractical to 
apps with high instruction, as it will be resulting in big numbers of opcode sequences.  
Gandotra et al. show that selecting features obtained from both methods help in shortening the time 
taken to build a classification model thus hindering the early detection of malware [20]. The project aims 
to prove that the features selection process would help to improve model-building time without 
compromising the accuracy of the malware detection system. They illustrated that features selection 
benefits in shortening the time taken to build classification model, thus may help to overcome the issue 
arise from Zolotukhin et al. model, but the discussion on the effectiveness of detecting zero-day malware 
with features selection was vaguely discussed.  

 
Additionally, Tong and Yan propose a method that dynamically monitors and collects execution data of 

apps to create both malware and benign pattern set. The malware detection system was done at the 
server. The execution data are based on the individual system calls and sequential system calls, which are 
related to the access of files and networks. If the parameters of the data were chosen properly, the 
detection accuracy of the proposed method could reach up to 91.76% with FPR lower than 4%. To proof 
the concept that this method could detect a new type of malware, they collect system call patterns of apps 
with new malware and compare the patterns in both malicious and benign pattern sets. Furthermore, the 
detection accuracy of this method could be further improved, as there is the implementation of self-
learning to the pattern sets [6]. 

 
However, this method does not support real-time detection due to the big data processing and new 

call patterns of newly detected malware. Privacy of data extracted from the apps to the server also not 
considered. The data extracted and stored were large, thus need big storage to support. There are 
multiple methods taken by researchers to detect new types of malwares. In addition, the method for zero-
day malware detection and analysis are still imperfect, ineffective, and incomprehensive. Since the 
Android application is available not only at the official store, but there are also many security and privacy 
problems persuaded. Today, malware detection mechanisms are still incapable to deal with constantly 
appearing new types of neither malware, such as xHelper malware nor the existing ones, until an instant 
of this malware has damaged several mobile phones. Therefore, it is important to have a new detection 
method to detect malware unseen previously, in real-time environments with less consumption of 
resources in terms of memory consumption, use of storage and CPU processing.   
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This section highlighted some challenges and issues in the perspective of detecting Android malware. 
In summary, challenges and issues that should be considered as future research direction are as follows 
as new detection technique to detect the zero-day type of malware, new detection technique to identify 
mobile malware in real-time, datasets with updated malware family for evaluating malware detection 
technique and new mobile malware detection technique with the clear implementation of data privacy. 
 
5.0 CONCLUSION  
 
This work provides state-of-the-art discussions on detecting and evaluating malware focusing on 
attacking smartphones with Android operating system and its challenges. To do so, this paper has 
categorized the type of mobile malware such as Trojan, Adware, crypto jacking, etc. This paper also 
highlighted most popular and fundamental techniques usually used for detecting malware either in the 
smartphone that used Android or iOS operating system which are through dynamic analysis, static 
analysis, and hybrid analysis. As a side of contribution, newly type of Android malware is presented and 
its challenges to detect and evaluate are (such as detection and evaluation/assessment) are addressed. In 
the end, this paper suggested the need of new detection technique to detect the zero-day type of malware 
and detection technique to identify Android mobile malware in real-time with a clear implementation of 
user’s data privacy. Moreover, for research purposes of this fast-evolving research, the dataset of with 
updated malware family also required to evaluating any new detection technique. 
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